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Regulation of cell function by a non-thermal, physiological-level electro-

magnetic field has potential for vascular tissue healing therapies and

advancing hybrid bioelectronic technology. We have recently demonstrated

that a physiological electric field (EF) applied wirelessly can regulate intra-

cellular signalling and cell function in a frequency-dependent manner.

However, the mechanism for such regulation is not well understood. Here,

we present a systematic numerical study of a cell-field interaction following

cell exposure to the external EF. We use a realistic experimental environment

that also recapitulates the absence of a direct electric contact between the

field-sourcing electrodes and the cells or the culture medium. We identify

characteristic regimes and present their classification with respect to fre-

quency, location, and the electrical properties of the model components.

The results show a striking difference in the frequency dependence of

EF penetration and cell response between cells suspended in an electrolyte

and cells attached to a substrate. The EF structure in the cell is

strongly inhomogeneous and is sensitive to the physical properties of the

cell and its environment. These findings provide insight into the mechan-

isms for frequency-dependent cell responses to EF that regulate cell

function, which may have important implications for EF-based therapies

and biotechnology development.
1. Introduction
Electric fields (EFs) can regulate a variety of cell functions, including growth,

adhesion, reorganization of cytoskeleton, contractility, differentiation, prolifer-

ation, activation of intracellular pathways, secretion of proteins and gene

expression [1–7]. The regulatory effect of EFs has been demonstrated on differ-

ent cell types such as neurons, osteoblasts, myoblasts, fibroblasts, endothelial

cells, muscle cell and epithelial cells [8–14]. These effects result from manipu-

lation of the native EF in the ionic extracellular environment and across the

cell membrane [15–17]. The mechanisms behind cell–EF interactions are not

yet understood, which limits development of EF-based therapies.

Cells can interact with the surrounding environment through receptors and

ion channels embedded in the cell membranes, which transmit chemical, mech-

anical and electrical signals outside-in and inside-out the cells. Therefore,

coupling of an electromagnetic field with the live cell can occur via either

field interaction with charged molecules and proteins in the cell membrane

that alters the flow of ions through the ion channels or rearranges the distri-

bution of the membrane receptors, or via direct field penetration inside the

cell and interaction with charged entities in the cytoplasm [18–20].

Experimental evidence suggests that one possible mechanism for the EF

effects on cell function may involve an induced field in the cell membrane

that may cause alterations in the transmembrane potential [19,21–25]. The

transmembrane potential is established by the balance of intracellular and extra-

cellular ionic concentration that generates the voltage difference across the cell

membrane [21], and is maintained by ion channels, pumps and transporter pro-

teins embedded in the cell membrane [26]. In response to the external EF, the
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induced field in the cell membrane can cause modulation of

cell membrane potential, which in turn can increase the

activity of the sodium, potassium or calcium channels and

alter the enzyme activity of phosphates containing the

voltage-sensor domain, as has been shown using genetic or

pharmacological cell manipulations [18,27–29]. Depending

on the EF parameters, the effects of EF can also include mem-

brane electroporation in response to very high amplitude EF

(107 mV mm21) (mathematical model is explained in [30–32])

and can be used in electrochemotherapy, drug delivery and

gene therapy [33], as well as redistribution of membrane

channels and receptors in response to non-oscillating EF

with low, physiological amplitude (100 mV mm21) [25,34].

Theoretical models indicate the possibility of the high fre-

quency (1–10 GHz), low-amplitude EF penetration into the

cell via mechanisms other than electroporation, although

the exact conditions for this effect are not well established

[20]. Notably, this frequency range is well outside the range

that is likely to be encountered physiologically (e.g. less

than 1000 Hz in nervous system) without external stimula-

tion. Recent experimental studies by us and others provide

indirect support for this possibility by demonstrating that

such fields may trigger a variety of intracellular signalling

events that involve charge redistribution and ion flow,

including signal propagation via Ca2þ, gap junctions or

even protein–protein interactions [3,35–37].

In addition to the variation in EF parameters, the variability

of methods of low-amplitude EF delivery to cells can also

contribute to the diversity in the observed cell responses.

EF can be delivered to cells by direct contact of electrodes

with cells and the culture medium [38–42] or through a non-

contact approach, which isolates electrodes from cells and the

culture medium and capacitively couples EF to cells and the

culture medium as reported by us [3] and others [43–46]. Over-

all, experimental results suggest that different combinations of

EF intensity, frequency and/or polarization with respect to the

cell, as well as methods of EF delivery, can elicit a variety of dis-

tinct cell responses, making mechanistic studies of the EF–cell

interactions quite difficult.

The complexity of mechanisms for EF–cell interaction

calls for a detailed understanding of the induced EF structure

in cells subjected to electromagnetic field stimulation. Fricke

[47] introduced an empirical equation for the potential

induced in an ellipsoidal cell in suspension exposed to exter-

nal EF. Schwan developed the first theoretical equation for

the induced potential in a spherical cell in suspension

exposed to external EF by analytical solution of the Laplace

equation, where the cell is approximated by a spherical

shell representing the cell membrane [48]. The model by

Shawn treats the cell as a non-conducting membrane sub-

jected to a constant and alternating external EF [49]. Kotnik

et al. [50] extended Schwan’s theory by taking into account

the conductivity using constant, oscillating and pulsed EF.

Other geometries—cylindrical, spheroidal and ellipsoidal—

of cells suspended in the medium have been investigated

later [51–54]. Several studies have modelled the cell as mul-

tiple concentric shells to determine the induced EF in the

internal membranes [55,56]. The effect of surface charge

and electrical properties such as membrane conductivity on

the induced potential in spherical and non-spherical cell geo-

metries has been examined [50,57]. Numeric finite-element

modelling (FEM) [58–61] and transport lattice (TLM)

models [62–64] and approaches based on equivalent circuits
[65,66] have been used to examine complex cells of complex

shapes immersed in an electrolyte. However, in most in vivo
conditions, the cells are surrounded by and interact with the

extracellular matrix, rather than being suspended in an electro-

lyte medium. While the cell–matrix interactions may play an

important role in cell responses to the external EF, the effects

of these interactions on the EF distribution within the cell com-

partments are not understood, and the comprehensive

analyses of cellular responses, to our knowledge, have not

been incorporated into the existing models.

The objective of this study, therefore, is to determine the

effects of the EF frequency and extracellular environment

on cell responses to the external EF. The model is based on

the physiologically relevant configuration when parts of the

cell membrane are in close contact with the extracellular

substrate. The cell is modelled as a semi-spherical non-

conducting shell separating two conducting regions, the

culture medium and the cytoplasm, in direct contact with a

flat dielectric substrate. To recapitulate our experimental con-

figuration [3], the electrodes supplying the EF are isolated

from the medium. The EF is therefore coupled to the cell

and its environment capacitively, which eliminates electro-

chemical processes in the medium and reduces the electric

current and associated ionic flow effects on the cell mem-

brane. We obtain a high-resolution distribution of the

induced EF in a wide frequency range (1 Hz–10 GHz) in

the cell membrane, cytoplasm and extracellular medium.

We then examine the sensitive dependence of the induced

EF in the cell membrane and cytoplasm on cytoplasm electric

properties. The results demonstrate that the field distribution

exhibits physiologically important features that strongly

depend on the EF frequency and differ substantially when

compared with the all-electrolyte environment. The pre-

sented model and numerical method can be easily adapted

to in vivo arrangements.
2. Material and methods
High-frequency structure simulator (HFSS, v. 14) software

(ANSYS Corp, PA, USA) was used for numeric solutions of

Maxwell’s field equations. A variable-density adaptive mesh

was generated to enable field calculations over a wide range of

length scales, from nanometres for the membrane thickness to

micrometres for the cytoplasm. The mesh was refined until an

acceptable accuracy for the calculated EF was attained at all

characteristic dimensions of the model. The large-scale mesh

accuracy was tested by comparing the numeric results to the

analytical solution (equation (2.1), given in the section below).

The fine-scale mesh for intracell and membrane field calculations

was refined to achieve a proper convergence of the path integrals

of EF to zero along small closed paths. We verified that the

meshes used in the simulations were sufficiently dense to pro-

duce mesh density-independent simulation output. Dimensions

used in the simulation and material parameters [20,66–69] are

given in table 1.

2.1. Model system
The model follows the design of our recent experimental in vitro
studies [3]. The electrodes used to generate the EF are isolated

from the medium by dielectric spacers (figure 1a) and modelled

as infinitely conducting planes. These electrodes define simu-

lation boundaries. The EF produced by the electrodes is

oriented perpendicular to the substrate and is influenced, at the

cell location, by both the potential difference applied to the

http://rsif.royalsocietypublishing.org/


Table 1. Model parameters used in the simulations.

component parameter value used in simulation reference

cell membrane thickness 5 (nm) [67]

relative permittivity (1membrane)a 11.3 [20]

conductivity (smembrane) 0 [20]

cell cytoplasm radius 5 (mm) [66]

relative permittivity (1cytoplasm)a 80 [68]

conductivity (scytoplasm) 1.5 (S m21) [69]

culture medium relative permittivity (1medium)a 80 [68]

conductivity (smedium) 1.5 (S m21) [69]

height 48 (mm)

resistance (Rmedium) 3332 (V)

capacitance (Cmedium) 0.14 ( pF)

cell substrate relative permittivity (1substrate)a 2.6

conductivity (ssubstrate) 0

thickness 1 (mm)

capacitance (Csubstrate) 0.22 ( pF)

electrodes electrode separation 50 (mm)
aRelative permittivity: 1material /1air.

culture
medium Rmedium

Ccoating

Cmedium

Csubstrate

V

0

dielectric
coating

EFinduced

cell substrate

top electrode

culture
medium
cells

bottom electrode

(b)(a)

Figure 1. (a) Non-contact electrical stimulation of live cells. The electrodes are isolated from the culture medium by the substrate layer (bottom) and the coating
layer (top). Electrodes are oriented to ensure that the resulting electric field, EFinduced, is perpendicular to the cell substrate. Cells are placed on the substrate surface
which is in contact with the stimulation apparatus. (b) Equivalent electric circuit with no cell present. Ccoating and Csubstrate represent the capacitance of the dielectric
insulating layers; Cmedium and Rmedium are the capacitance and resistance associated with the electrolyte (culture medium), respectively. The oscillating voltage V is
applied to the top and bottom electrodes. (Online version in colour.)
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electrodes and the substrate polarization. In the absence of cells,

the system is equivalent to a one-dimensional circuit (figure 1b).

The upper and lower capacitors represent the capacitance of the

top dielectric and the substrate (Csubstrate). The resistive (Rmedium)

and capacitive (Cmedium) components of the culture medium

impedance are also shown. The potential difference between

the electrodes created by an external source (Vapplied) creates an

EF in the culture medium given by

EFinduced¼
vRmediumCsubstrate

d� 4þ vRmediumCsubstrate 1þ2
Cmedium

csubstrate

� �� �2
 !1=2

Vapplied,

(2:1)

where v is the angular frequency of the applied field and d is the

separation of the dielectric coatings. The magnitude of the EF

induced in the medium, EFinduced, is plotted in figure 2 as a func-

tion of the applied field frequency. The plot is generated by Igor

Pro software (WaveMetrics, OR, USA) and the values used for

parameters are listed in table 1. At low EF oscillation frequency,

the EF is screened from the medium by the redistribution of the

ionic charges on the medium boundaries. The EF appears in the
medium when the frequency becomes comparable with or larger

than the characteristic inverse charging/discharging times,

approximately 100 MHz for our geometry.

2.2. Modelling the cell on a substrate
The cell is modelled as a membrane-enclosed hemisphere with a

realistic membrane thickness and radius attached to a substrate

(extracellular matrix) and surrounded by cell-culture medium

(figure 3). The cell and the substrate are non-conductive dielec-

trics with different dielectric permittivities (table 1). The culture

medium and the cell cytoplasm are modelled as an electrolyte

with ionic mobilities and concentrations that mimic those

in vivo. The top and bottom electrodes are infinitely conducting

metallic layers. Each region is homogeneous and isotropic.

A 10 V potential difference is applied between the electrodes.

We note that electric properties in the range of field intensities

relevant to the experiments under physiological conditions are

nearly independent of the field intensity; therefore, the problem

is linear and describes the distribution of EF produced by an arbi-

trary driving voltage with an appropriate rescaling of the

simulation results. We find the induced EF in the cell membrane,

http://rsif.royalsocietypublishing.org/
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EFinduced is excluded from the culture medium. By contrast, EFinduced in the culture medium rises dramatically as the frequency approaches 100 MHz and reaches a
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Figure 3. (a) Schematic of a cell attached to the substrate. (b) Hemispherical cell model used for simulations. Cell radius is 5 mm and membrane thickness is 5 nm
(not drawn to scale). Polar coordinate system (r, u) is used to characterize the magnitude of the induced EF in the cell membrane.
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cytoplasm, extracellular medium and cell substrate by solving a

full set of Maxwell’s equations

r� E ¼ � @B
@t

, r�H ¼ J þ @D
@t

, r �D ¼ r

and r � B ¼ 0,

(2:2)

here, E, B, H ¼ B/m, J and D ¼ 1E are the position- and time-

dependent vectors of the EF, magnetic field, magnetic field

strength, electric current density and electric displacement, m

and 1 are the magnetic permeability and electric permittivity

and r is the local density of electric charge. The induced EF is

found by solving the wave equation, as follows, which is

obtained by combining the first two Maxwell’s equations

r� 1

mr
r� E

� �
� k2

0erE ¼ 0, (2:3)

with

mr ¼
m

m0

, er ¼
e

e0
, k2

0 ¼ v2e0m0, (2:4)

where mr and er are the (generally complex-valued) relative

permeability and permittivity, k0 is the free space wavenumber

and v is the frequency of the applied EF.

The boundary conditions are fixed potentials on the two

electrode boundaries, Vtop and Vbottom

Vbottom � Vtop ¼ V cosvt, (2:5)

where V is the externally applied driving voltage and v is the

frequency of the applied field (1 Hz–10 GHz).
3. Results and discussion
3.1. Electric field distribution in the cell: frequency

dependence
We first present the results of simulations at four locations along

the axis of the model symmetry (figure 4): a site in the culture

medium, a site inside the cytoplasm, the ‘apex’ and the ‘sub-

strate side’ of the membrane. For all four locations, three

distinct frequency regimes are identified. Region I (approx.

1 Hz–1 MHz): in agreement with the one-dimensional circuit

model (figure 1), the EF is screened in the electrolyte compart-

ments (the cytoplasm and the culture medium). Importantly, a

strong field is still present in the cell membrane, both at the

apex point and the substrate side. This is the central result of

this work. It shows that electrodes isolated from the medium

can produce EF even in free membranes, as long as a portion

of the cell membrane is attached to the substrate. This is an

important difference between the arrangement presented here

and cells suspended in a culture medium electrolyte entirely,

where no field can be produced in the membrane unless there

is a penetration of the field into the electrolyte. An important

implication of this finding is that even at DC voltages (as well

as frequencies up to 1 MHz), manipulation of the field strength

in the cell membrane can be achieved.

Region II (approx. 1 MHz–100 MHz): the penetration of

the field into the cytoplasm and the culture medium devel-

ops. Both the cytoplasm and the culture medium exhibit

very similar behaviour; the field in the membrane at the

apex point rises and reaches values comparable with those

in the substrate side of the membrane.

Region III (approx. 100 MHz–10 GHz): the penetration of

the field into electrolyte is fully developed and becomes

http://rsif.royalsocietypublishing.org/
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Figure 4. Frequency dependence of EFinduced in the cell cytoplasm and the culture medium (a) and the cell membrane at the apex and substrate side (b). The
response to the applied electric field can be divided into three regions. In region I, the electric field is induced in the cell membrane and is excluded from the
cytoplasm and culture medium. In region II, EFinduced in the cell membrane increases at the cell apex up to the maximum value (Emax � 12 � 105 V m21) and
starts to penetrate into the cytoplasm and culture medium, while it does not change significantly at the cell membrane facing the substrate. In region III, the
magnitudes of EFinduced at the cell apex and the substrate side both decrease and eventually reach the same plateau, while EFinduced in the cytoplasm and culture
medium both increase and also reach plateau values at high frequencies.
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frequency-independent again. The fields in the apex and the

substrate side of the membrane decrease slightly and reach

comparable, frequency-independent values at frequencies

1 GHz and higher.
3.2. Spatial variation of electric field
Having identified the characteristic frequency domains of the

problem, we turn to the spatial dependence of the induced

field (figure 5). The colour plots (figure 5a) illustrate the EF dis-

tribution at three characteristic frequencies: 60 Hz, 10 MHz

and 1 GHz. At each frequency, the EF is present in the mem-

brane and the EF penetration to the electrolyte-filled regions

is apparent as the frequency increases. In the membrane, the

field is nearly homogeneous along the substrate and varies

strongly through the free section of the membrane facing the

medium (figure 5b). We also note a rapid change in the EF

amplitude at points close to the cell edges.

A detailed calculation of the evolution of the angular dis-

tribution of the membrane field with frequency (figure 6)

reveals two characteristic behaviours. At the locations close

to the substrate (u , 308), there is a gradual decrease in the

field magnitude with increasing frequency. EF distribution

at the points positioned further into the free membrane sec-

tion (u . 508) shows a characteristic rise to a plateau

followed by the eventual reduction of the field with increas-

ing frequency. This is similar to the ‘Apex’ response

presented in figure 4, which corresponds to u ¼ 908. Interest-

ingly, the results show that the field in the substrate-facing

section of the membrane close to the cell centre (line labelled

‘substrate side’), far from the cell edge, is significantly stron-

ger than the field in the low-lying points of the free

membrane at all frequencies. This apparent discrepancy is a

real effect that reflects the rapid change of the membrane

field near the cell edge in the transition zone between

the substrate-facing and the free-medium facing parts of the

membrane (figure 5a).
3.3. Conductivity of the cytoplasm: regulation of the
cell cytoplasm screening in response to electrical
stimulation

Figure 7 shows the sensitivity of the induced EF at the mem-

brane apex and substrate (figure 7a) and the cytoplasm

(figure 7b) to the cytoplasm conductivity values. At the

apex, a higher cytoplasm conductivity results in larger

fields. In the cytoplasm itself, increasing the conductivity

has the opposite effect: the higher the cytoplasm conduc-

tivity, the lower the magnitude of the induced EF.

Effectively, increasing the conductivity of the cytoplasm

makes the screening of the field in the cytoplasm more

powerful, thus leading to increases in the in-membrane

field and decreases in the cytoplasm field. As expected, the

field in the membrane facing the substrate is not sensitive

to the cytoplasm properties.

3.4. Substrate and culture medium properties and field
penetration into the culture medium

Finally, we determine the effect of the substrate proper-

ties on field penetration (figure 8). The numeric results

presented here are similar to the results obtained via the

one-dimensional model (figure 2). Increasing the capacitance

of the spacer layers reduces the corresponding voltage drops.

As a result, the characteristic frequency at which the field

begins to penetrate the medium decreases. Therefore,

the high-frequency boundary of region I (figure 4) can be

tuned. This observation creates an interesting opportunity

for experiments that focus on intracellular effects: a measure-

ment with a relatively low substrate capacitance at a given

frequency can be used as a control as the field will be

effectively screened from the cytoplasm. Increasing the

substrate capacitance will introduce the field into the

cytoplasm, so EF-mediated effects could be quantified.

A relatively weak but notable dependence of region I width

http://rsif.royalsocietypublishing.org/
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Figure 5. (a) Spatial distribution of the induced electric field in a single cell attached to a substrate and exposed to the external electric field that is perpendicular to
the substrate. The scale applies to all colour plots, with the maximum value of Emax � 12 � 105 V m21. At low frequency of the applied field, the induced electric
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on the culture medium and substrate properties is presented

in figure 8b, which demonstrates that decreasing the conduc-

tivity of the medium or increasing the permittivity of the

substrate results in the shift in the characteristic frequency

of field penetration into the cell to the lower frequency

values.
3.5. Physiological implications
Our findings demonstrate pronounced differences in cell

responses to non-contact application of EF for two major

configurations: cells freely suspended in the electrolyte

medium and cells in direct contact with a dielectric substrate.
Importantly, the latter configuration is more physiologically

relevant and may describe, for example, vascular endothelial

cells attached to the basement membrane, or cells within the

tissues in contact with the extracellular matrix, as well as cells

in contact with the implant surface. Absence of the electrolyte

along parts of the membrane permits the EF to enter the cell

membrane even at low frequencies and DC limit. In this

regime (region I in our classification of observed field pat-

terns with respect to frequency), this difference in cell

responses between suspended and adherent configurations

is the most striking: suspended cells experience no electric

phenomena at low frequencies, while the cells attached to a

substrate will have significant, location-dependent fields in

http://rsif.royalsocietypublishing.org/
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the cell membrane. These fields result from the redistribution

of charges in the cell-culture medium and in the cytoplasm.

We have shown, therefore, that non-contact application of

the EF to cells attached to non-conducting surfaces can be

used to manipulate the EF in cellular membranes, which

has important physiological implications. For example, sev-

eral studies have reported that the alteration of the cell

membrane potential can lead to the modification of the cellu-

lar structure such as redistribution of the actin cytoskeleton,

changes in the localization and expression of focal adhesion

proteins (e.g. vinculin) [70–74]. The induced potential

evoked by the applied EF has been shown to alter the adhesive

properties of cells and activation of adhesion-related proteins

[4,75]. The induced membrane potential can activate signal-

ling mechanisms (e.g. Rho/ROCK) involved in the structural
alteration and increase the level of membrane proteins that

regulate attachment of the cytoskeleton to the cell membrane

[76–78]. The induced EF can affect voltage-gated channels

embedded in the cell membrane, increase gene expression

and extracellular-related proteins [43–46].

Interaction of the cell with EF changes as the field fre-

quency increases. The EF in the membrane is retained, as

an increasingly larger EF appears in the cytoplasm. This

result is consistent with earlier reports that found penetration

of the cytoplasm by a high-frequency EF in a free-floating

configuration [20]. We show that the characteristic frequency

at which the penetration of the field into the culture medium

occurs can be tuned by varying the capacitance of the sub-

strate layers and can be lowered substantially if materials

with higher dielectric permittivities are used. An important

http://rsif.royalsocietypublishing.org/
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implication of this finding is that this effect can potentially be

used in EF-based therapy to stimulate intracellular cell acti-

vation and desired cell responses (e.g. migration along the

surface of the implant) via an appropriate combination of

the implant material and the applied EF field. Indeed, in

our previous studies [3], we discovered that high-frequency

EF stimulation results in activation of vascular endothelial

cells and angiogenic cell responses via the mechanism con-

sistent with the model presented above. The results of the

present study, therefore, may lead to the development of

new approaches for vascular stents, where endothelial cell

activation, proliferation and migration can be the key factor

that determines success or failure of the stent [79,80].

Our results demonstrate a close relationship between

cytoplasm conductivity and induced EF in the different

cell compartments, which results from physiological cell

homeostasis. The cytoplasmic conductivity depends on the

concentration of the intracellular ions regulated by fluxes of

ions into and out of the cell through ion channels in the cell

membrane [81,82]. Voltage-gated ion channels can be

opened in response to changes in the membrane potential

to let inorganic ions diffuse down their electrochemical gradi-

ents across the cell membrane; therefore, the cytoplasm

conductivity can be changed during electrical stimulation

which in turn may affect the induced EF [83–85].

In this study, we have not included any dispersive,

frequency-dependent terms in the dielectric properties of

the materials. While small at frequencies that we have con-

sidered, these will become progressively larger as the

frequency increases into tens of gigahertz and would need

to be included in higher frequency calculations.
4. Conclusion
This study presents a novel model for a high-resolution

microscopic analysis of the induced EF in a single cell in phys-

iological configuration (i.e. in the electrolyte medium and

attached to the extracellular substrate) exposed to the external

EF. Our findings demonstrate striking differences in cell

responses between cells suspended in a medium and cells

attached to a dielectric substrate. We identify several character-

istic regimes and present their classification with respect to

frequency, location, and the electrical properties of the model

components. These findings provide key information for

understanding the mechanisms of cell responses to the electri-

cal stimulation, both in the context of data interpretation from

recent in vitro experimental results by us [3] and others [43–46],

and for future therapeutic applications.

Manipulation of cells via a precisely applied EF can be

used to trigger desired responses at the cell and tissue level
and to restore impaired cell functions [3,6,86–92], suggesting

great potential for development of safe and effective EF-

based clinical treatments. To date, clinical application of EF

has been reported for treatment of bone fracture, pain relief

and chronic wound healing [93–97]. The majority of the stimu-

lation devices used in clinical studies for chronic wound

healing and pain relief deliver EF through generation of

direct current (200–800 mA), monophasic or biphasic pulsed

current with voltage ranges between 20 and 500 V [95,98–

102], or using transcutaneous electrical stimulation device

[103,104]. The EF current is generated between the electrodes

that are placed on the skin. Although on average these thera-

pies show a beneficial effect on wound healing, the

outcomes still vary significantly, which is likely due to wide

variability in the wound type, patient type, medical

personnel training, electrode placement, duration of stimu-

lation and EF parameters used for stimulation. As a result,

EF-based stimulation is not currently used as a standard

therapy [102,105].

Important advantages of our approach for potential

EF-based wound healing therapy is in a non-contact appli-

cation of EF that does not require placement of electrodes

on the skin, which may improve patient comfort and

treatment compliance [102,105], and may eliminate the con-

cerns related to application of direct current EF due to pH

changes in the stimulated area [98]. Our numerical model

demonstrates that by non-contact application of an EF, we

can induce a sufficient EF in the cell membrane and cyto-

plasm to manipulate protein expression and activate

intracellular pathways as supported by our experimental

results [3]. Such numerical modelling of EF–cell interactions

is an essential and necessary part of the clinical translation pro-

cess; it helps to establish therapeutic concepts and to advance

approaches toward the development of non-pharmacological

EF therapies [106–108], which can be applied locally and

without direct contact with tissue [101,105,109–112]. Impor-

tantly, our theoretical approach can be generalized to

investigate the interaction of EF with cells of an arbitrary

shape. These studies, as well as an investigation of EF induced

in the cell nucleus or other internal cell components and pen-

etration of the field into tissue modelled in three-dimensional

cellular arrays will be performed in the future.
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